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Inverse Scattering in Inhomogeneous Background Media

FINAL REPORT

Contract # F49620-02-1-0309

A.J. Devaney
A.J. Devaney Associates, Inc.

Abstract

The inverse scattering problem is solved within the distorted wave Born approximation (DWBA)
using a generalized time reversal based formulation. The theory is applicable to arbitrary (non-point)
N. element transmitter arrays and No element receiver arrays and to scattering systems characterized by
scattering potentials interrogated in a set of scattering experiments employing single or multiple temporal
frequencies. The inversion scheme generates a pseudo-inverse reconstruction of the scattering potential
based on the SVD of the No x N. multistatic data matrix considered as a mapping from the Hilbert space
of scattering potentials to the vector space of N,6 x N. x N. complex N-tuples, where N& is equal to the
number of discrete temporal frequencies employed in the set of scattering experiments. The theory and
results in this report have been previously published and appear in: 1. A.J. Devaney and M. Dennison,
"Inverse Scattering In Inhomogeneous Background Media," Inverse Problems 19, No. 4 (August 2003),
855-870, 2. M. Dennison and A.J. Devaney, 'Inverse scattering in inhomogeneous background media:Part
II SVD analysis and multiple frequency case, Inverse Problems, 20, 2004, 1307-1324.

1 Introduction

The research reported herein was conducted over the past three years and consisted of the extension of
the methods of time reversal based imaging to applications of inverse scattering. The foundations of the
developed theory were published in 2003 in [1] and applied to the inverse scattering problem for frequency
dependent, compactly supported scattering potentials formulated within the distorted wave Born approxima-
tion (DWBA) [2]. In that paper the scattering object was assumed to be embedded in a known background
medium and the distorted wave Born approximation to the Lippmann Schwinger equation was shown to
lead to a simple expression for the so-called multistatic data matrix K(03j, ak, w). This latter quantity is the
scattered field amplitud e at receiver point )3j due to point source excitation at transmitter point ak and
temporal frequency w and was assumed to be known (measured) over some arbitrary set of transmitter and
receiver points indexed by k = 1, 2,-. , N 0 , j = 1, 2, .-- , NG and at some fixed frequency w. A Hilbert space
formulation of the inverse scattering problem thus stated was then employed that lead in a simple way to
an inversion algorithm that generates a least squares, pseudo-inverse of the scattering potential at the given
temporal frequency w.

The theory and results established in [1] were extended in [3] to be applicable to non-point transmitter
and receiver elements and to dispersionless scattering potentials for which the scattering data are known
at multiple temporal frequencies wf, f = 1, 2, --- , N,,. Although both generalizations were found to be
simple extensions of the underlying theory presented in the earlier paper and require only minor changes in
notation and implementation they can be important in practical applications that generally employ extended
2D antenna or transducer elements and broadband or stepped frequency excitation.

The least squares, pseudo-inverse inversion schemes developed in the grant are based on the singular value
decomposition (SVD) of the underlying DWBA mapping P : Hv -+ CN, where HV is the Hilbert space of
compactly supported scattering potentials and CN the space of complex N tuples where N = N 3 x N" x N,.
I emphasize that the use of the SVD employed here to solve the inverse scattering problem is vastly different
from its conventional use in other time-reversal based imaging and inverse scattering applications [4, 5, 61
where it is used to decompose the linear mapping from the incident field to the scattered field. In the study
reported here, it is used to decompose the mapping from the Hilbert space of compactly supported scattering
potentials to the finite-dimensional vector space representing the scattered field data. These two mappings,
and associated SVD's, are totally different and are directly applicable to different classes of problems.
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2 Problem Formulation and Review of [1]

I consider the general scenario of a scattering object compactly supported in some volume V that is embedded
in a known inhomogeneous background medium and is interrogated in a set of Nc. scattering experiments
where in each experiment the incident wave is generated by a point source located at ak, k = 1, 2, N,,,
and the scattered wave is measured over a set of NO point receiving sensors located at )3,, j = 1, 2,-.., Np.
The suite of data obtained from these experiments is called the multistatic data matrix and, within the
so-called distorted wave Born approximation (DWBA)[21, is related to the object's scattering potential via
the equation [1]

Kg,k(w) = j d3r G0 (f3j, r, w)O(r, w)Go(r, ak, w), (1)

where w is the temporal frequency, O(r, w) is the object's (generally complex) scattering potential relative to
the known background and Go is the background Green function which is assumed known. The multistatic
data matrix Kj,k can be directly measured at one or more frequencies w via monochromatic source excitation
or, alternatively, can be computed over a large set of frequencies via Fourier transformation of the measured
responses from pulse excitation.

By defining

Dn(w)=Kj,k(w), n=j+(k-1)Np, j=1,2,...,N•,k=1,2,...,N., (2)

we can regard the relationship Eq.(1) to be a linear mapping from the Hilbert space Hv of complex valued
scattering potentials O(r, w) compactly supported in V to the finite dimensional vector space CN(w) of
complex N-tuples D = { D, (w)}, n = 1, 2,--, N where N = NO x N,. Following the treatment presented
in [1] I express Eq.(1) in the form

"PO(w) = D(w) (3)

where *P is the integral operator Hv --+ CN(w):

"P = I d3r rw(r, w), (4a)

with
nG;()3jrw)G*(a•krw) ifr e V

( 00 else-wise. (4b)

The above set of equations provide the underlying formulation of the inversion scheme developed in the grant
and reported in [1] and in [3].

2.1 Pseudo-inverse of the DWBA mapping

At each frequency w the distorted wave Born approximation (DWBA) mapping Eq. (3) defines a projection
of the unknown scattering potential 0(r, w) onto the subspace Hv = Span{ir,, C Hn of Hv that is spanned
by the set of functions {ir,(r, w)}, n = 1, 2,--- , N. This fact was the basis for the pseudo-inverse of this
mapping presented in [1) where the pseudo-inverse 6(r, w) was expanded into the set of spanning functions
7rn with coefficients Cn that were computed by direct matrix inversion. Thus, in particular, we have that

N

O(r,w) = Cn(W)lrn(r,w) (5a)
n=1

where
N

< 7r.,>HV= Dn(W) E < Irn,rn' >Hv Cn, (5b)
n'=I

and where

< f, f 2 >Hv= j d3r fJ(r)f2(r) (6)
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is the standard inner product in Hv. Eq.(5b) can be expressed in the matrix form

Il(w)C(w) = D(w) (7)

where 11(w) =< 7rn,, r,, >Hv is the N x N inner product matrix of the spanning functions -7r, and C(w) =
[Ci(w), C 2 (w), - , CN(w)]T is the column vector formed from the expansion coefficients of the pseudo-inverse
Eq.(5a).

The final step of the inversion consists of diagonalizing the inner product matrix 11(w) and generating a
least squares inversion of Eq. (7); viz.,

1 = UAUt W C= UA+UtD, (8)

where A+ denotes the diagonal matrix whose non-zero diagonal elements are the reciprocals of the non-zero
eigenvalues A. > 0 of the 11 matrix. As discussed in [1] the expansion Eq.(5a) with expansion coefficients
determined from Eq.(8) is a least squares, pseudo-in'Verse of the inverse scattering problem within the DWBA.
That 6 is a pseudo-inverse (minimum L2 norm solution) follows from the fact that the subspace Hn is the
pre image space (orthogonal complement of the null space) of the DWBA mapping P. The fact that it is
a least squares solution follows from the use of a least squares solution to the matrix equation defining the
expansion coefficients.

3 Generalizations and Extensions

The inversion scheme developed in [1] and summarized above admits a number of generalizations and ex-
tensions as reported in [3]. Here we will only discuss the extension to non-point transmitter and receiver
elements and to the multiple frequency case for dispersionless scattering potentials.

The basic scheme is easily generalized to be applicable to experiments employing extended planar
(non-point) transmitter and receiver elements upon simple replacement of the background Green functions
Go(13j, r,w) and Go(r, ak, w) by the wave fields

r, w) = J d2r'7Zr(/3j, r', w)Go(r', r, W), (9a)

go(r, ak, W) = Jd 2r'lZt(r', ak, w)Go(r, r', w). (9b)

The wave field g0 ()3j, r, w) corresponds to the measured response at an extended planar sensor element lo-
cated at 6j and having receiving response function R1r (,

3 j, r', w) while Go(r, ak, w) is the wave field generated
by an extended planar source located at ak and having transmission response function Rt (r', ak, w). For
this more general situation the multistatic data matrix as defined in Eq. (1) has to be replaced by

CJ,k(w) = J d2 r" J d2 r' Rr (j, r", w)Kr,,,r, (w)lt (r', ak, W)

= j d3 r G0 (,3j, r, w)O(r, w)Go(r, ak, w)

where

Kr-,,r (w) = IV d3r Go(r", r, w)O(r, w)GO(r, r', w),

is the multistatic data matrix evaluated between the source point r' and receiver point r". With the
replacement of Kj,k with K)j,k and the spanning functions irn by

r)= ()3j,r,w)G0*(r,aw) ifr E V
w {else-wise.

the entire theory is applicable to experiments employing non-point transmitter and receiver elements char-
acterized by the transmission and receiver response functions 7Rt and Ri,.
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4 Multi-frequency case for frequency independent potentials

In the theory developed in [1] and outlined above the object scattering potential is assumed to be dependent
(in an unknown way) on the temporal frequency w so that Eq.(3) is a mapping from the Hilbert space Hv
of compactly supported scattering potentials at fixed frequency w to the N-dimensional vector space CN(w)
of complex N-tuples D(w) = {Dn(w)} at that specific fixed frequency. In the special case where the object
scattering potential is independent of w then the basic structure of this mapping changes and becomes a
mapping from the Hilbert space Hv of frequency independent scattering potentials O(r) compactly supported
in V to the tensor product of the N- tuple spaces CN(w) over the band of frequencies used in the set of
experiments.

We can restructure the basic DWBA mapping within this new formulation as follows. First, lets assume
that we have experimental data Kj,k(w) at discrete frequencies w = wf, f = 1, 2,..., N,,. In the spirit of
our definition Eq.(2) we define

On = Kj,k(wf), n = j + (k - 1)N6 + (f - 1)N,, (10)

where, as before, j = 1,2,-.- ,N8, k = 1,2,--. ,N,. Eq.(10) defines an N-tuple with N now equal to
N = Ny x N, x N,, and the DWBA mapping for frequency independent scattering potentials becomes

PO = D (11)

where P is the integral operator

n = jd3r r*(r), (12a)

with irn(r) defined as

irn(r) = I G;(/3jrwf)G*(akrwf) ifr e V
0( else-wise. (12b)

With the above definitions the pseudo-inverse employed for frequency dependent potentials can be applied
with minor modification. Thus, in particular, we have as before

N

6(r) = 1 Chirn(r) (13a)
n=1

where the expansion coefficients Cn are solutions to the coupled set

N

D. = 1 Cn' < irn, r, >Hv - (13b)
n'=1

Eq. 13b can be re-written in matrix form as
D = 110 (13c)

where HI(n, n') =< irn, irn,' >H, is the N x N inner product matrix. The least squares pseudo-inverse
solution for the scattering potential is then given by Eq.(13a) with the expansion coefficients given by the
least squares solution of Eq.(13c).

It is clear from the above that from a strictly computational viewpoint the inversion of frequency inde-
pendent scattering potentials is structurally and formally identical to that of frequency dependent potentials.
The effect of adding scattering data acquired at different frequencies is treated in the same way as would be
the addition of scattering data acquired at additional transmitter or receiver points. Both of these result in
an increase in the number of expansion functions {1r71 } generating the subspace Hn = Span{ir7 1 } of Hv and,
presumably, increase the dimension of this subspace and the quality of the inversion. Although transmitter
and receiver location diversity and frequency diversity are formally equivalent for non-dispersive scatter-
ing potentials, they are not equivalent in terms of information content. In particular, frequency diversity
is generally of more importance in reflection type experiments such as are used in pulse-echo ultrasonics,
GPR (ground penetrating radar) and seismic exploration while source and receiver diversity are critical in
transmission type experiments employed in tomographic type experiments [8].
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5 Reformulation

The computer implementation of the single or multiple frequency inversion algorithms involves the following
steps:

1. Computation of the inner product matrix

fI(n, n') = j d3 r -r*(r)irn,(r)

where n,n' = 1,2,-. ,N with N = Np x N, x N•,

2. Diagonalization of the inner product matrix: H = UAUt,

3. Computation of the least square, pseudo-inverse C of the expansion coefficient column vector C: C =

UA+UtD,

4. Computation of the least squares pseudo-inverse 65(r):

N

6(r) = E 6irn (r).
n=1

Steps 1 and 2 are data independent and, hence, can be performed prior to actual data acquisition and,
thus, do not affect the execution time of the inversion algorithm. Steps 3 and 4, on the other-hand, are
performed after or in conjunction with data acquisition and can impose rather severe demands both in terms
of execution time and computer storage requirements. Step 4, in particular, requires the storage of the set
of spanning functions irn(r), n = 1, 2,- -, N and Vr E V which can require a great deal of storage space for
three-dimensional (3D) problems and/or in the multi-frequency case where the number N = Np x N, x N.,
can be quite large even for moderately large numbers of transmitter and receiving elements. These high
computational costs stem from the fact that the set of spanning functions {1rn} are neither orthogonal or
linearly independent with the result that the inversion is not economical in terms of computer storage or
CPU time. This problem can be overcome by generating a linearly independent set either by means of the
Gram- Schmidt procedure or by application of the Singular Value Decomposition (SVD) to the basic DWBA
mapping Eq.(11). The SVD approach is particularly appropriate and will be employed here since it allows
us to order the singular functions in order of importance according to the size of their associated singular
value. Here, we will employ the SVD and derive a new formulation of the pseudo-inverse that minimizes
the computational burden while retaining the same quality of inversion as obtained by the basic formulation
presented in [1]and outlined above.

5.1 SVD of the DWBA mapping

To compute the SVD of the DWBA mapping it is necessary to introduce an inner product in the data space
CN and to compute the adjoint Pt relative to the two inner products in the spaces HV and CN. As before
we employ the standard inner product in HV and will also employ a standard inner product in CN; i.e.,

< fl,f2 >Hv= d3rfi(r)f2 (r), Vfl,f 2 E Hv, (14a)

N

<Ul,U2 >CN Zu*(n)u2 (n), Vulu 2 E CN (14b)
n=~1

With these inner products we find that

N

<u,P•f >CN= 5 u* (n)] d3 r irn(r)f(r)
n=1 IV

N

= , d3, {y1 u(n)7rn(r)}*f(r) =< tu, f >H
n=1

5



from which we conclude that
N

Pfu= u(n)irn(r), VuEC N. (15)
n=1

The SVD of the DWBA mapping employs the singular system {up E CN, vp E Hv, -p Ž 0},p =

1, 2, - - -, N where
Pvp=upup, ptup=apvp. (16a)

Using the singular system we then find that

N

"P = E apUpv, (16b)
p=l

where vp : Hv C is defined in the usual way via the equation

vff = d3rv (r)f(r) =< vp,f>B, Vf Hv,

and for each p = 1, 2,-. , N. The singular vectors vp and up are found as solution to the normal equations

"P"Pvp = avp, -ptpup = a2up. (16c)

The functions {vp(r), up _Ž 0} (with appropriate normalization) form an orthonormal basis in the Hilbert
space Hv while the N-tuples (column vectors) {up, ap >_ 0} form an orthonormal basis in CN. Moreover, the
set {vp, ap > 0} provides an orthonormal basis in Hn C Hv and the set {up, up > 0} provides an orthonormal
basis in the image of H1 under P. The set {vp, ap > 0} are, thus, precisely the set of orthonormal basis
functions needed to replace the set of spanning function {irn, n = 1, 2, -.. , N} now employed in the pseudo-
inverse solution developed in [1]and outlined above.

5.2 Computing the Singular Vectors

We can write the L.h.s. of the normal equation for the singular vectors up in Eq.(16c) in the form

N

PP fup I d3rirn(r) E up(n')irn1 (r)
n'=1

N
N{f d'r'rn (r')irn, (r')}up(n) = flup

nf=l V

where up(n) is the nth component of the up singular vector and H =< irn, 7n,' >Hv is the N x N inner
product matrix of the spanning functions 7rn. We thus see that the normal equation for up is simply the
matrix equation

1lup = u'uu (17)

which is the diagonalizing equation for the H matrix. In other words the singular vectors up are the eigen-
vectors of the II matrix and the square of the singular values _2 are the eigenvalues.

Once the singular vectors up are computed the associated singular vectors vp having non-zero singular
values ap > 0 are computed using Eq.(16a); i.e.,

N

0uPvp = Ptfu •' vp = u(n -7rn(r), (18)
n=1 aP

where we have used the definition of the adjoint operator Pt given in Eq.(15). It is important to note that
the singular vectors up, vp, ap > 0 are data independent and can be computed prior to data acquisition
and, hence, their computation will not affect the execution time or storage requirements of the reformulated
inversion algorithm.

6



5.3 Generating the Inversion

As discussed previously, the main advantage of the new formulation is that the set {vp}, ap > 0 are or-
thonormal and, hence, form a minimal set of functions into which the pseudo-inverse 6 of the scattering
potential can be expanded. Thus, in particular, it is only necessary to store the singular vectors vp(r) for
o-p > 0 rather than the entire spanning set .7r(r), n = 1,2, -. , N. Moreover, as we will show below, only
projections < vp, 0 >Hv of the scattering potential associated with singular vectors whose singular values
a. exceed some threshold value ap > f > 0 can be reliably computed in the presence of additive noise or
measurement error so that only those singular vectors whose singular values satisfy this condition need be
retained and used in the inversion. The threshold value e is a regularization parameter that can be selected
to balance noise tolerance versus accuracy of the inversion algorithm. We mention that the new formulation
still requires that the II matrix be computed and then diagonalized as in the old scheme. After that the
eigenvectors and eigenvalues of 17 are used to compute the singular vectors vp using Eq.(18). The inversion
can then be generated directly from the stored singular system {vp, up, ap > E} as we will now describe.

To compute the pseudo-inverse we first represent the data vector D in the basis up; i.e.,

N

D = E < up, D >cN up. (19a)
p=1

In a similar manner we can expand the unknown object profile 0 into the set of singular vectors vp:

N

0 = < Vp, 0 >Hv Vp. (19b)
p=1

If we now substitute this set of equations into the DWBA mapping PO = D we find that

N N

Sap < Vp, 0 >HV up = < up, D >cN Up (20a)
p=l p=l

from which we conclude that

<VpO>H, < up, D >CN (20b)
ap

if ap > 0. The pseudo-inverse is thus given by

6 = < up, D >CN vp. (20c)
ap> 0 p

As I remarked above, in the case where additive noise is present we would like to regularize the expansion
Eq. (20c) by setting a threshold E > 0 and using only singular values and associated singular vectors for which
ap > c. The sensitivity of the inversion 6 to additive noise or other errors in the data vector is apparent
from Eq.(20c) which shows that small changes in < up, D >CN are magnified by the presence of ap in the

denominator of the expression for 0. Such a regularization, which is data independent, not only increases
the robustness of the reconstruction but it also decreases the number of singular functions that need to be
stored so that both computer storage requirements as well as CPU execution time are decreased. We will
examine the regularization issue for a number of test cases in section 6.

6 Computer Simulation

The inverse scattering algorithms developed in the grant and outlined above were tested in computer simu-
lations in both [1] and [3]. Here we will only present the simulations given in [31 since they encompass the
results presented in the earlier paper and are generated from the optimal form of the reconstruction algo-
rithm. In the simulations we employed a simple non-dispersive background model consisting of a uniform,
constant velocity medium with and without a perfectly reflecting bottom layer in which is embedded a small

7



non-dispersive scattering potential. The scatterer is assumed to be embedded in a rectangular grid with x
denoting horizontal position and z vertical position with positive z directed downward. In cases where we
employ a set of frequencies w,, f = 1,2,..-, Nt,, we define a center frequency w. which results in a center
wavelength A, = 1 from which we will reference all of our distances. In particular, the grid spacing is selected
to be one tenth of this wavelength (6x = Jz = 1/10). In all simulations the transmitter array was located
on the top row of the rectangular grid and the receiver array along the left hand side of this grid. When
present, the reflecting bottom was placed along the bottom row of the grid.

The object of the simulations is first to examine the performance of the algorithm for frequency inde-
pendent scattering potentials when multiple distinct frequencies are used as discussed in section 4 and to
compare the reconstructions obtained in this case with results obtained using only a single frequency. A sec-
ond goal is to determine the computer storage gain obtained when using the SVD based inversion algorithm
of section 5. In all the simulations we assume point source excitation and point receivers and do not test the
effect of extended sources or receivers on the performance of the inversion algorithm. Also, as was the case
in [1], the simulations test the performance of the inversion algorithm and not the validity of the DWBA
which is outside the scope of this paper. We therefore computed the scattered field data (multistatic data
matrix) within the DWBA according to Eq.(1) using the above mentioned background consisting of either a
uniform constant velocity background or a uniform background with a bottom reflecting layer.

6.1 Test Cases

The simulations were performed on a 5A, x 6A• image grid (= V) with one-tenth center wavelength sampling
as discussed above. The sources were located on the top row of the support grid with cases of N, = [3, 5, 7, 9]
elements while the receivers we located on the left hand side of the grid also with cases Np = [3,5,7,9].
The simulations were also performed at a number of frequencies w = [2wc, wc,, 1 1w] which result in
wavelengths of [•A , , ,Ac, 2c] with Ac set to a value of unity.

We used two objects with different characteristics. First was a composite object consisting of a set of
5 real valued circular discs having diameter A,/2 distributed at the corners and center of a square 3Ac per
side. We will call this Object 1. The second object is a rectangle centered in V with dimensions 3A, x 2A,.
Embedded in this square is another rectangle of dimensions 1A x A,/2. We will call this Object 2. Tests
for both objects were performed both with and without the reflecting bottom and also with and without
additive white Gaussian measurement noise (AWGN) although we only present the results for the cases that
provide information we did not see in [1].

As was the case in [1] the Green functions needed to compute the spanning functions {ir,(r), n -
1,2,--., N} are constructed from a Hankel function of the first kind whose argument is a function only of
the distance between the field point (or its mirror image about the reflecting bottom) and the source or
receiver location. In the case of a uniform background model the spanning functions are found to be given
by

rn (r, of) =G;(,j - r,wf)G*(ak- r, wf) if r (21)
(W else-wise

where

Go(R, wf) = -2Ho(kfIRI)

where H0 is the zero order Hankel function of the first kind and k, 1 is the background wavenumber for the
given frequency wf. In the case of a perfect reflecting bottom the background Green function is given by

Gb(r, r', wf) = Go(Jr - r'h, of) - Go(Ir - r'h, wf)

where we have used the subscript "b" to denote the reflecting bottom Green function and where r' is the
mirror image of the point r' about the bottom; i.e., r' = (x', -z'- 21o) where l0 is the distance of the bottom
from the top of the grid. In the case of a reflecting bottom the spanning functions are thus computed using
Eq.(21) with the background Green function replaced by Gb.

To analyze the performance of the algorithm in the presence of noise, we used additive white Gaussian
noise (AWGN) which was added to the data vector D such that the noisy data D = D + AF and A =
Ar(O, a 2I). The noise variance was taken to be 2% of the largest component of the D vector.
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6.2 Multiple Frequencies

The use of multiple frequencies in the reconstruction of non-dispersive objects is illustrated in figures 1-3. In
figures 1 and 2, we see the difference between the reconstructions for Object 1 and Object 2 when we use the
data obtained by performing the scattering experiment with one frequency and then with four frequencies.
As we would expect, the reconstruction quality improves dramatically as we add the new data. In particular,
the extended square, Object 2, which is completely unresolved at a single frequency, is well resolved with
four. An interesting thing to note is the improvement in the ability of the algorithm to represent the part
of the object that is farther away from the array. This is critical as most practical applications will not
have array coverage on all sides of the image grid and, as we saw from part I, even large arrays at a single
frequency will not generate adequate data to accurately recreate the far edge of the grid. These results are
consistent with other attempts at using multiple frequency data within the DWBA [13].

In section 4 we mentioned that in reflection type experiments frequency diversity is more important
than source receiver diversity. The offset VSP type of experiment that we are simulating here is inter-
mediate between a reflection and transmission type of experiment [81; when we use the reflecting bottom,
the experiment is more like a reflection experiment and without the bottom it is more like a transmission
experiment. We should then expect that frequency diversity is a more important factor in the quality of the
reconstruction when the reflecting bottom is used and diversity in the source/receiver positions to be more
important without the bottom. To illustrate this, we performed simulations with the reflecting bottom and
with comparable amounts of data, one diverse in frequency and the other diverse in receiver position. The
results for the reflection type experiment are shown in figure 3 while the results of the transmission type
experiment are shown in figure 4. In figure 3(a,b) we can see the reconstructions for a 7 x 7 array at a single
frequency and for a 5 x 5 array at two frequencies which use 49 and 50 data points respectively. In figure
3(c,d) we used a 9 x 9 single frequency array and a 5 x 5 array at three frequencies, which use 81 and 75
data points. After comparing these reconstructions, we can see that the diverse frequency arrays outperform
the single frequency arrays. The single frequency arrays do a better job of representing the disk in the
upper left corner but cannot give any indication of the two discs along the bottom. In figure 4 we do the
same comparison without the reflecting bottom. It is clear from this figure that the diversity in the position
of sources/receivers produce a much sharper picture in this experiment which again is closely related to a
transmission experiment.

6.3 SVD Inversion Scheme

To examine the performance of the SVD based formulation of the inversion scheme, we investigated the
consequences of changing the level of F. For noise-free data, as we set the threshold higher and higher, the
number of singular values we keep decreases and therefore the quality of the reconstruction will decrease.
At the same time however, the time to compute the reconstruction as well as the amount of storage needed
for the singular functions decreases, which is the goal of the new formulation. In fact, the storage space and
reconstruction time are both linear functions of the number of singular values with the same rate of change,
so we can think of these qualities as equivalent in terms of their change. In the case of noisy data, as we
set the threshold lower and lower, we will get a better reconstruction until a point when the singular values
become too small and the reconstruction is dominated by noise. It is at this point that we would like to
compute the reconstructions and determine how much storage space was saved.

We first performed simulations with noise-free data, varying E so that in each test 10% of the singular
values were dropped. Looking at figures 5 and 6, we can see the results of these tests. We see that the
reconstruction is almost unchanged even when we remove 50% of the singular values. While it is obvious
that the quality of the reconstruction will drop as we remove singular values, we are also interested in how
this compares to the storage space needed for the singular functions. Looking at figure 7 we can see these
results for our tests. Here we have plotted the percentage decrease in the time to compute the reconstruction
for some N% of the singular values defined as

672% = T100 % - TN%
N T loo%

where T100% is the time compute the reconstruction using all singular values, against the percent reconstruc-
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tion error, defined as

ER d2, 10(r) - 6(r)12 Z-,o IO(r.)- 6(rn)12 (22)
iO(r)12 2O(rn)12V n

We see that for each of the tests, as we remove 10% of the singular values for a test, we also get a 10%
reduction in the time to compute the reconstruction. What is interesting is that the percentage error is not
increasing at that fast of a rate, especially in the range of 50 - 100% of singular values. This tells us that
when keeping between 50 - 100% of the singular values, for a reasonably small decrease in reconstruction
quality, we get a very large performance increase in terms of reconstruction time.

In the noisy cases, we need to determine the threshold at which we need to start to drop singular values
to obtain a reasonable reconstruction. This would give us a clear picture of how much storage and time we
could save while still producing the optimal reconstruction. In figure 8, we can see the noisy reconstructions
of Object 2 for four sets of frequencies, two of which we have seen the in the noise-free cases of figure 1. We
can see here that the objects were still reconstructed quite well, although we also see that there is a limit
to how much data we can add for a given experiment as the addition of the fourth frequency in figure 8(d)
does not add much to the reconstruction. The main purpose of these experiments was to determine how
many of the singular values we are able to discard, and by looking at figure 9, we can see that we were able
to eliminate 5 - 30% of the singular values, corresponding to an equivalent reduction in computation time
and storage space. We can also see that the percentage kept was well within the region we defined above
as having a small impact on reconstruction quality which is why we were able to get quality reconstructions
while reducing the storage needs by this amount.

It is also important to mention that the thresholds that were obtained were done so with the use of the
object profile which allows us to calculate an error value for each amount of singular values kept. Without
knowledge of the object profile, the calculation of the threshold becomes a much harder problem and is
beyond the scope of this paper. Attempts to work on this problem are detailed in [14].

7 Summary

In this grant the inverse scattering problem was formulated and solved within the distorted wave Born
approximation (DWBA). The theory is general and applies to both dense and sparse transmitter and receiver
arrays that are arbitrarily distributed in space and whose elements can be extended and have arbitrary
radiation patterns. Inversion algorithms have been derived and tested in computer simulations that yield a
pseudo-inverse of the inverse scattering problem from either single frequency or broad band scattering data.
An important feature of the theory and inversion algorithms is that they incorporate a priori knowledge
of both the background in which the unknown scatterers are embedded as well as estimates of the support
volume of the scatterers.

Future work in this area will focus on its extension to vector valued fields (e.g., electromagnetic and
elastic waves) and to the use of regularization methods other than the SVD. It is also planned to apply the
algorithm to real data sets acquired in both electromagnetic as well as elastic wave scattering experiments
currently being planned.
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Figure 3: Reconstructions of Object 1 comparing single and multiple frequencies with reflecting bottom.
Shown are the reconstructions for (a) Na = Np = 7 and A = [ r] (b) Na = Nf = 5 and A = [A,, 3A,] (c)
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Figure 4: Reconstructions of Object 1 comparing single and multiple frequencies with no reflecting bottom.
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Shown are the reconstructions for (a) 25% (b) 50% (c) 75% (d) 100%. All reconstructions performed for
No = N,3 =7 and A = [1),, Ac, !A\].

100

-g- Decrease Comp.9 -- Time _j/

Bo ----- Error Object 1

70 - -- Error Object 2

60
50
40
30
20

100 90 80 70 60 50 40 30 20 10

Figure 7: Graph of percentage time gained (6TN%) and percentage reconstruction error (ER) for varying
numbers of singular values kept. All data was obtained for reconstructions using Na = N 3 = 7 and
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Figure 9: Graph of the percentage of singular values kept for the reconstructions of Object 2 as seen in Fig.
8 plotted against the number of total singular values.

18


